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Quantum dynamics of a two-level system coupled to a bosonic 
degree of freedom in terms of Wigner phase space distributions 

N Klenner, M Doucha and J Weis 
Fakultat fur Physik, Albert Ludwigs Universitat, D-7800 Freiburg, West Germany 

Received 4 February 1986 

Abstract. The quantum dynamics of the Hamiltonian of a two-level system coupled to a 
boson mode is formulated in terms of the Wigner matrix. The trace of the Wigner matrix 
gives complete information for the bosonic degree of freedom. The time evolution and 
the long time average of the trace of the Wigner matrix is calculated numerically for small 
perturbations and in resonance. Some aspects of ‘quantum chaos’ of the two-level system 
are discussed. 

1. Introduction 

In a recent paper (Klenner et al 1986, hereafter referred to as I )  we have discussed 
the quantum and semiclassical dynamics of the Hamiltonian 

H = b’b + atmx( b + b+) + sb,. (1.1) 

We have shown that the semiclassical dynamics is not at all appropriate to approximate 
the quantum dynamics for the parameter ranges which were considered. These para- 
meter ranges are not relevant for quantum optical applications but are well suited to 
discuss the two-site model of small polaron motion. 

In I ,  we have worked out a suitable method to treat the eigenvalue problem of the 
Hamiltonian (1.1). We will use the same method in this paper to discuss the quantum 
dynamics of the Hamiltonian (1.1) in terms of Wigner phase space distributions. In 
particular, we will use the same complete set of orthonormal functions in Bargmann 
space as in I to expand the eigenfunctions of the Hamiltonian (1.1). We are interested 
in the quantum dynamics of (1.1) for two reasons. Firstly, although (1.1) is a basic 
model in various fields, dynamical calculations are still rare (Eberly et al 1980, Graham 
and Hohnerbach 1984a). The dynamics of a simple non-adiabatic model Hamiltonian 
perhaps shows some qualitative features that are also important for more complicated 
and more realistic non-adiabatic Hamiltonians. Secondly, the semiclassical dynamics 
of (1.1) is chaotic (Belobrov et a1 1976, Milonni et a1 1983, Feinberg and Ranninger 
1984, Ackerhalt et a1 1985). 

For this reason, the two-level system was considered to be a simple example of 
‘quantum chaos’ (Graham and Hohnerbach 1984b). In this paper we will discuss some 
of the qualitative features of the quantum motion of the two-level system. In  5 3 of I, 
we presented the dynamics of the fermion in detail. We have calculated the expectation 
values ($J(f ) lgxld4t) ) ,  ($J(~)lgYlW)), ($J(t)lg,l+(t)) and the entropy of the fermion 
& ( t )  starting with a product state (equation (3.2) of I ) .  This gives a clear picture of 
the dynamics of the fermion degree of freedom. 
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On the other hand, we have calculated the expectation values ( $ ( t ) l i i $ ( r ) )  and 
($ ( t ) lb /$ ( r ) )  for the bosonic degree of freedom. But this is not sufficient to get a clear 
picture of the bosonic dynamics, since very different bosonic wavefunctions can give 
the same bosonic expectation values. The purpose of this paper is to present the 
bosonic dynamics in more detail. We will use the Wigner-Weyl representation of the 
quantum mechanics to describe the bosonic behaviour since it gives information about 
configuration and momentum of the bosonic degree of freedom. In the classical limit 
( h  + 0) the dynamics of the Wigner phase space distribution reduces to the phase space 
dynamics of the corresponding classical Hamiltonian. Since the phase space is usually 
used to discuss classical chaos, the Wigner phase space distribution should be appropri- 
ate to discuss ‘quantum chaos’. Such an analysis was carried out for the Henon-Heiles 
Hamiltonian (Hutchinson and Wyatt 1980) and  for a periodically kicked particle 
(Korsch and  Berry 1981). Quite recently, a quantum rotator kicked periodically by 6 
pulses was analysed in the Wigner-Weyl representation for the case of angle-action 
variables (Berman and Kolovsky 1985). Usually the systems under consideration are 
systems with two degrees of freedom or time-dependent systems with one degree of 
freedom. These are the simplest systems where classically chaotic motion can arise. 
All the systems mentioned above are of this type. The Hamiltonian (1.1) is, in some 
respects, not of this type. Clearly we have two degrees of freedom, but the Hilbert 
space of the fermion is only two dimensional. This drastically simplifies the calculations 
and leads to the concept of a Wigner matrix. 

The paper is organised as follows. In 8 2 we present some basic facts about the 
Wigner- Weyl representation of one-dimensional quantum systems. We will point out 
some properties of the Wigner phase space distribution which will be needed for the 
interpretation of the results presented in § 4. In § 3 we introduce the Wigner matrix 
and discuss the relevance of its trace for the bosonic degree of freedom. We will see 
that the diagonal elements of the Wigner matrix give restricted information about the 
fermion whereas the trace of the Wigner matrix gives complete information about the 
bosonic degree of freedom. Further we write down the Schrodinger equation in the 
Wigner matrix formulation to point out some peculiarities of the two-level system. In 
B 4, we present the numerical results for the Wigner matrix. We discuss the dynamics 
of the trace of the Wigner matrix for small perturbation ( f = O . l )  and resonance 
(g= 0.5). It seems that the dynamics is similar in both cases when evolving on different 
timescales up  to times for which 8r < 10. Additionally we have calculated the long 
time average of the trace of the Wigner matrix in both cases. Finally, we discuss some 
aspects of ‘quantum chaos’ of the two-level system in § 5. 

2. Wigner-Weyl representation for quantum systems with one degree of freedom 

The Wigner-Weyl formalism is described clearly in the book of de  Groot and Suttorp 
(1972) and we will use their notation here. The Weyl transform a(q, p )  of an  operator 
a(4, p^) is a real function in phase space and  is defined by 

In our units we have h = 1. A quantum system is usually described by its state vector 
I + (? ) )  or by the density matrix p* = l + ( f ) ) ( + ( t ) l .  But one can equally well describe the 
quantum system by the Weyl transform of the density matrix p*. The Wigner phase 
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space distribution defined by . r+cc 

is (modulo 27r) the Weyl transform of the density operator. It is important to note 
that every expectation value of an arbitrary operator A( 4, p*) can be expressed in terms 
of its Weyl transform a(q, p )  and the Wigner phase space distribution W(q,p, t )  by 

(2.3) 

For this reason, all the information about the quantum system can be extracted from 
the Wigner phase space distribution. But it is generally not easy to visualise and even 
to calculate the Weyl transform of a given operator A($,  p*). For the restricted class 
of operators 

A($, p^)  =f(4*) + dp*) 

p )  = f ( s )  + g( P) 

(2.4) 

(2.5) 

the Weyl transform is simply 

and the Wigner phase space distribution immediately gives a picture of the phase space 
dynamics (by equation (2.3)). The probability distributions of configuration and 
momentum can be obtained from the Wigner phase space distribution by 

X 

(2.6) 

This indicates that the Wigner phase space distribution cannot be peaked arbitarily 
sharp as a function of q and p. Due to Heisenberg's uncertainty relations, a sharply 
peaked q distribution will give a broad p distribution and vice versa. In $ 3 we will 
start with a coherent state in the bosons, which is a minimum uncertainty state with 
Ax = Ap = l/J% A broadening of an initially maximum peaked Wigner phase space 
distribution reflects the increasing lack of information about the phase space behaviour 
of the quantum system. If the Hamiltonian is of the form 

H = p 2 / 2 m +  V ( q )  (2.8) 

the dynamics of the Wigner phase space distribution is managed by the equation 

The first term of equation (2.9) is simply the Poisson bracket and moves the initial 
distribution along the classical trajectories. The second term of equation (2.9) contains 
partial derivates of odd order higher than three and is therefore a 'diffusion' term. 
Since the partial derivatives in the diffusion term are higher than two, the Wigner 
phase space distribution at time t will have negative values even if the initial distribution 
is positive. Therefore, it cannot be interpreted as a probability distribution, but 
nevertheless it contains a lot of information about the phase space behaviour of the 
quantum system. 
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3. Dynamics of the two-level system in terms of the Wigner matrix 

To treat the bosonic degree of freedom of the Hamiltonian (1.1) in phase space, we 
introduce the Wigner matrix 

ci.(q, p ,  t )  = W,,(q ,p ,  t ) l l>( l l+  W d q ,  P, t)11)(21+ Wz,(q, p,  t)12)(11+ WAq,  p ,  t)12)(21 
(3.1) 

I+(t)) = I+(t))lll)+IrL(t))Zl2) (3.2) 

in a; representation. The matrix ci. (q ,  p ,  t )  is explained by the equation 

where I+( t ) )  denotes the state describing the systzm at time t and 11) = It)x, 12) = l J ) x .  
The expectation value of an arbitrary operator A can be calculated using the Weyl 
transform matrix ai, (q ,  p )  defined by 

We find 
m m  

(+ ( t )~~ i l+ ( t ) )  = I_, dq dpai,(q, p )  Wj(q,  p ,  t ) *  (3.5) 

Note that for a pure boson operator i =f (b ,  b’) the non-diagonal elements of the 
Weyl transform matrix a, ( q ,  p )  are zero and a , ,  ( q ,  p )  = a,, ( q ,  p ) .  For this class of 
operators we have 

5 

( + ( f ) l i l c L ( r N =  J”= J” dq dpa,,(q,p){W,,(q,p, t ) +  W*,(q,p, t ) ) .  (3.6) 
-02 -x 

This means that the trace of the Wigner matrix plays the same role for the bosonic 
degree of freedom of the system under consideration as the Wigner phase space 
distribution in one-dimensional systems. Therefore the trace of the Wigner matrix 
gives a complete description of the bosonic behaviour. 

Putting a = /t)xx(tl, we have 

a , ,  = 1 a ,  = 0 for ( i , j )  # (1 , l ) .  

This gives 

In the same way we find 

The LHS of equation (3.7) gives the probability of finding the electron at site and 
the LHS of equation (3.8) gives the probability of finding the electron at site We 
see that the diagonal elements of the Wigner matrix give only restricted information 
about the fermion. To have complete information about the fermion, the non-diagonal 
elements of the Wigner matrix are necessary. Since we have discussed the fermion 
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behaviour in detail in I, we will only calculate the diagonal elements and the trace of 
the Wigner matrix. This is done by using the same complete set of orthonormal 
functions in Bargmann space as in I: 

(3.10) 

Here If"y) is the vth eigenstate of a displaced harmonic oscillator. The displacement 
in configuration space is 2 ~ .  Using the expansion 

/ = O  

of the nth eigenstate of the Hamiltonian (1.1) (as in I )  and the initial state 

(3.11) 

(3.12) 

(as in I )  one can calculate the time development of the diagonal elements of the Wigner 
matrix straightforwardly. The result is 

(3.13) 

x a;';y' exp[-i(Ez:- E~)~I~",.Y~",~~'(YY')(-~)~+~'(~;*IG(~, p)lf;K) 
(3.14) 

where the E :  are, of course, the energy eigenvalues of positive and negative parity of 
the Hamiltonian (1.1) and 

(3.15) 

The crucial point in the calculation of W,,(q,p, t )  and W,,(q, p ,  t )  is the fact that we 
are able to find an analytical expression for the Wigner phase space matrix elements 
(flK1s(q, p)lE.") of the displaced harmonic oscillator. The results of the calculation 
(see the appendix) can be summarised as follows: 

( . c " / G ( q ,  P) lE?  = ( l"y l4q f2K, P)Il"y,) (3.16) 
and 

(l"y~)if(q,p)~.PY,)=-exp[i~(v- IT vt)l($) (-1)" e-"(~2r)Y'-uL:.--(2r2) (3.17) 
1/2  1 
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where r, 4 are the polar coordinates in phase space: 

q = r cos 4 
p = r sin 4. 

(3.18) 

The Schrodinger equation in the Wigner matrix formulation is the following system 
of coupled partial differential equations of first order: 

(3.19) 

Equations (3.19) are to be solved with the initial distributions 
- 1  W,,(q, p, 0) = 77 exp[ - ( q  + 2K - J Z a ) 2 - p 2 ]  

w,, ( q ,  PI 0) = 0 
(3.20) 

These initial distributions describe the coherent state (3.12) in the Wigner matrix 
formulation. The solution of this problem is given by equations (3.13) and (3.14). We 
have written down equations (3.19) to point out some peculiarities of the two-level 
system. Normally, the difference of quantum and classical phase space distribution 
behaviour is due to the ‘diffusion’ terms in the Schrodinger equation ( 8  2 ) .  Equations 
(3.19) d o  not contain diffusion terms. Since the potential is harmonic, no partial 
derivates higher than one appear. The complexity of the Wigner matrix motion is due 
to the coupling, which is switched on by the parameter For zero coupling ( & =  0), 
the solution with the initial distributions (3.20) is 

( k J )  + (1,1).  

W,,(q,p, t ) = x - ’ e x p [ - ( q + 2 ~ - a a  cos t ) ’ - ( p + a a  sin t ) * ]  
(3.21) 

The Gaussian distribution moves simply along the classical trajectories. There is no 
difference in quantum and classical phase space distribution behaviour. 

W,(q, P, t )  = o  ( i , j )  + (1, 1).  

4. Numerical results 

In this paper we use the same parameters as in I. As mentioned before and  shown in 
I ,  these parameters are well suited to discuss small polaron motion. Therefore we will 
always have the two-site model of small polaron motion in mind (see I )  when we 
comment on the numerical results. 

Figure 1 shows the initial Gaussian distribution (3.20). Since only W,, ( q ,  p, 0) is 
different from zero, the trace of the Wigner matrix and W,, ( q ,  p, 0) are identical. Note 
that W,, ( q ,  p, 0) = 0 means that the electron is at site It)x for r = 0. Remember that, 
for b= 0, the Gaussian distribution moves along the classical circle ( q  + 2 ~ ) ’ s ~ ’  = 2 a 2  
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0 3 -  

4 
- 0  1 -  

Figure 1. Gaussian phase space distribution W,, ( q , p ,  0) corresponding to the initial 
coherent state (3 .12) .  

with period T = 27r and without changing its shape. We will first discuss the case of 
small perturbation ( 6 =  0.1). Figure 2 ( a )  shows W,, (9, p ,  4T). We see a Gaussian-type 
distribution at the expected place in phase space with a considerably reduced peak 
height. Since 

or  for normalised states 

(4.1) 

(4.2) 

the distribution W,, (9, p ,  4T) must be different from zero. The electron is no longer 
at site It)x, but it is ‘between’ the two sites. The structure of W,, ( q , p , 4 T ) ,  which is 
shown in figure 2 ( b ) ,  is a very typical one for times up  to 1OT The sharp peak in the 
structure of W,, ( q ,  p ,  t )  moves along the circle ( q  - 2 ~ ) * + p ,  = 2a2 with period T = 27r. 
Only the height of the whole structure changes considerably in time. The superposition 
of W , ,  (4, p ,  4T) and W2> (4, p ,  4T) gives the trace of the Wigner matrix at t = 4T (see 

0 2 1  6 0  

W 

, n  0 3 0  6 0  \ - 3 u  
4 I 4 

- 0  1 ’  -0 1 -  

Figure 2. (a) Wigner matrix element W,, (9 .p .4T) .  ( b )  Wigner matrix element W,? 
(9 ,p ,4T) .  The parameters used are K =0.5, s=O.l, a = 1.5. 
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figure 3 ( a ) ) .  In order to save space, we present for the times t = 6 T  (figure 3 ( b ) ) ,  
r=8T (figure 3 ( c ) )  and t =  10T (figure 3 ( d ) )  only the trace of the Wigner matrix, 
which gives complete information about the bosonic degree of freedom as mentioned 
before. The striking features of these pictures are the strongly peaked structures 
enclosed by a broad shoulder. Since the trace of the Wigner operator has negative 
values, the relevance of these strongly peaked structures is not clear. This is because 
they can cancel each other away in the calculation of the integrals (2 .6 ) ,  ( 2 . 7 )  or (3.6). 
To demonstrate this, we have integrated Tr( @(q ,  p ,  10T)) with respect to p to obtain 
the probability distribution in configuration space (see figure 9 ( a ) )  and with respect 
to q to obtain the probability distribution in momentum space (see figure 4( b ) )  of the 
bosonic degree of freedom. We see that the peaked structures are reflected in the 
configuration distribution but not in the momentum distribution. Due to the rotation 
of W , ,  ( q ,  p )  and W,, ( q ,  p )  the role of configuration and momentum in respect to the 
peaked structures is changed in time. 

Let us now turn to the case of resonance (a=;). The most striking difference to 
the case of small perturbation is the fact that the fermion needs only one period T to 
destroy almost completely the initial coherent state (see figure 5 ( a ) ) .  Figures 5 ( b ) - ( d )  
show the trace of the Wigner matrix for the successive times 3 / 2 T ,  2T and 5/2T Note 
that, for resonance Tr( W (  q, p ,  t ) )  changes much more rapidly in time than for small 
perturbation. It is interesting that Tr( @( q, p ,  t ) )  for a=  0.5 is similar to Tr( @( q, p ,  5 t ) )  
for b=O.l (compare, for example, figures 3 ( d )  and 5 ( c ) .  This suggests that for the 
five times greater perturbation the dynamics is very similar to the dynamics of small 
perturbation but on a timescale which differs from the previous one by a factor of five. 

0 3 7  0 3 - ,  \ ( b l  

0 0 
0 

9 
- 0  1' - 0  1' 

0 3 - ,  
I 
\ Id!  ! c l  

W 

- 3 0  0 3 0  6 0  
4 'I 4 

0 . 1 ' '  -0 1' 

Figure 3. Trace of the Wigner matrix at time t :  ( a ) ,  47'; ( b ) ,  6 T ;  ( c ) ,  8T;  ( d )  10T 
Parameters as in figure 2. 
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0.61 

9 P 

Figure 4. Probability distribution in (a) ,  configuration space; ( b ) ,  momentum space at 
time f = 10T Parameters as in figure 2. 

4 
- 0 . 1  

0 3 -  
i c )  

4 I - 0 . 1  

0.31  
i d )  A 

3.0 6.0 
4 4 

- 0.1 - 0  1 \ 
Figure 5. Trace of the Wigner matrix at time t :  ( a ) ,  7; ( b ) ,  3 / 2 7 ;  ( c ) ,  2T;  ( d ) ,  5 / 2 7 ,  The 
parameters are K =0.5, 8= 0.5, a = 1.5. 
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We have observed this behaviour up to times for which 8f < 10. For greater times, this 
correspondence breaks down and it is hard to see any regularity in the motion. 

Until now, we have presented the dynamics of the two-level system for small times. 
Our next aim is to obtain some information about the long time behaviour of this 
system. For this purpose, we have calculated the long time average of the diagonal 
elements and the trace of the Wigner matrix. Since the energy spectrum is non- 
degenerate for the parameters under consideration we have 

, r~ 
exp[-i(E,Y:-E,Y)t] d t =  S,, n . S y y . .  (4.3) 

The long time average is now obtained when the oscillating terms in (3.13) and (3.14) 
are replaced by the Kronecker deltas. It is sufficient to calculate the long time average 

0 0 2 -  

la 
0 0 2 -  0 0 2 -  

W 

0 4 0  

Figure 6. ( a )  Long time akerage of the Wigner matrix element W,, ( q , p ,  I ) ,  parameters 
as in figure 2 ,  ( b )  for & = o  5 

0 OL-  c 04- 

' 0  

W 
W 

0 L O  0 

- 4  0 - L  0 

Figure 7. ( a )  Long time average of the trace of the Wigner matrix, parameters as in figure 
2 ;  ( b )  for d = 0 . 5 .  
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Wll (9, p )  because 

as can be seen from (3.13), (3.14) and (4.3). 
Figure 6 ( a )  shows the behaviour of the bosonic degree of freedom averaged over 

the times when the electron is at or near the site It)x. In the long time average, the 
peaked structures cancel each other partly away for small perturbations. The harmonic 
'torus' dominates in this case. This situation is changed for the case of resonance (see 
figure 6 ( b ) ) .  The harmonic 'torus' is damaged as the peaked structures in the middle 
increase in height. The structure of the long time average of the trace of the Wigner 
matrix in both cases (see figure 7 )  can be understood as the supperposition of the two 
displaced, relatively simple structured diagonal elements. It is interesting that the 
results are very similar in both cases, when only the structure is taken into account. 
The main difference is the relative height of inner and outer structures. This is due to 
the behaviour of the expansion coefficients aj"*') which are sharply peaked in both 
cases (see tables 1 and 2 of I). 

%(q, P) = W**(-q, -P) (4.4) 

5. Discussion 

We have presented in this paper the quantum dynamics of the bosonic degree of 
freedom of the two-level system in detail. We have used a Wigner matrix formulation, 
introduced in 0 3, because it gives information about some qualitative features of the 
bosonic phase space motion. We now consider the implications of our results for the 
'quantum chaos' of the two-level system. We have shown in I that the semiclassical 
and quantum trajectories are not correlated for the parameters used. For this reason 
all the chaotic properties of the semiclassical trajectories are not relevant in the quantum 
case. Only for increasing excitation of the bosons will chaotic features of the semi- 
classical motion influence the quantum motion, due to the correspondence principle. 
Next we can ask about chaotic properties of the quantum system without referring to 
the semiclassical limit. We have seen that the time evolution of the trace of the Wigner 
matrix is complex and shows hardly any regularity. But it seems that this is not a 
measure of 'quantum chaos'. We have shown in I that the criterion of quantum 
integrability of Hose and Taylor (1983) is satisfied up to resonance for all couplings. 
This means that the whole energy spectrum is regular up to resonance. Additionally, 
Kus (1985) has observed regularities in the nearest-neighbour level spacings. This led 
him to the conclusion that there is no quantum chaos in the two-level system, although 
Farrelly (1984) and Berry (1984) showed that this distribution can be irregular for 
integrable cases. 
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Appendik. Calculation of the Wigner phase space matrix elements < E l w ( q ,  p)lK,) of 
the displaced harmonic oscillator 

Since If:,) is the v'th eigenstate of the displaced harmonic oscillator (the displacement 
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in configuration space is 2 ~ ) ,  we have 

and 

(f:ls)=(EI4+2K). 

Equations ( A l )  and (A2) lead to 

Therefore it is sufficient to calculate the Wigner phase space matrix elements for the 
harmonic oscillator. To do this, we calculate first the Wigner phase space distribution 
T(q,  p ,  5, 7) for the generating function 

of the harmonic oscillator: 

In contrast to the integrals arising from the Wigner phase space matrix elements of 
the harmonic oscillator, the integral (A5) of the generating function O(q, 5) can be 
calculated straightforwardly. The result is 

Next we expand the two last exponential functions in (A6) and equate the coefficients 
of 5 * ” ~ ” ’  in (A6) and (A7). We find after some algebra that 

where r, 6 are the polar coordinates in phase space. 
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